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Abstract

Event camera has offered promising alternative for visual per-
ception, especially in high speed and high dynamic range
scenes. Recently, many deep learning methods have shown
great success in providing model-free solutions to many
event-based problems, such as optical flow estimation. How-
ever, existing deep learning methods did not address the im-
portance of temporal information well from the perspective
of architecture design and cannot effectively extract spatio-
temporal features. Another line of research that utilizes Spik-
ing Neural Network suffers from training issues for deeper
architecture. To address these points, a novel input repre-
sentation is proposed that captures the events’ temporal dis-
tribution for signal enhancement. Moreover, we introduce a
spatio-temporal recurrent encoding-decoding neural network
architecture for event-based optical flow estimation, which
utilizes Convolutional Gated Recurrent Units to extract fea-
ture maps from a series of event images. Besides, our ar-
chitecture allows some traditional frame-based core modules,
such as correlation layer and iterative residual refine scheme,
to be incorporated. The network is end-to-end trained with
self-supervised learning on the Multi-Vehicle Stereo Event
Camera dataset. We have shown that it outperforms all the
existing state-of-the-art methods by a large margin.

Introduction
We have witnessed the prosperous development of neuro-
morphic cameras, which offer promising alternatives for vi-
sual perception. For example, one of the most popular neu-
romorphic vision sensors, the event camera (Lichtsteiner,
Posch, and Delbruck 2008; Brandli et al. 2014), has ex-
hibited better potentials in handling high-speed scenarios
and demonstrated superiority in robustness compared with
frame-based cameras. Biologically inspired by the retinal
periphery, each pixel responds independently to the change
of luminance by generating asynchronous events with mi-
crosecond accuracy in the event camera. Therefore, event
camera greatly reduces the amount of data needed to be
processed, and their distinct and novel working principles
provide some promising advantages such as extremely low
latency, high dynamic range, and low power consumption,
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making them a good fit for domains such as optical flow, ob-
ject tracking, or dynamic scene understanding. Optical flow
estimation has a wide range of applications, especially in au-
tonomous driving (Aufrère et al. 2003; Capito, Ozguner, and
Redmill 2020) and action recognition (Efros et al. 2003).
Although optical flow estimation has achieved remarkable
success in frame-based vision (Teed and Deng 2020; Wang,
Fan, and Liu 2020; Liu et al. 2020), it is unlikely to directly
apply traditional frame-based optical flow estimation algo-
rithms to event data since the data formats in the two fields
are too different.

Recently, many research studies focus on training an end-
to-end neural network to estimate optical flow in a self or
unsupervised manner (Zhu et al. 2019; Ye et al. 2018; Lee
et al. 2020; Zhu et al. 2018b). In most existing deep learning
works, a series of asynchronous events are first transformed
into alternative representations–event image that summa-
rizes events into a 2D grid. Then, all the event images or fea-
ture maps are concatenated as one entity and fed into Con-
volutional Neural Network (ConvNet) at one time. Although
this practice contains spatial information about scene edges
that is familiar to conventional computer vision, it did not
address the importance of temporal information well from
the perspective of architectural design since ConvNet is orig-
inally designed to extract spatial hierarchies of features (Ya-
mashita et al. 2018). In addition, event cameras bear severe
noise (Wang et al. 2020). Unfired events can be easily intro-
duced especially in some complex textured and high-speed
scenarios, e.g. driving on the highway, due to bandwidth lim-
itations (Hu, Liu, and Delbruck 2021). Thus, the problem
of event signal enhancement has a strong deviation from its
image-based counterpart and requires deliberate modifica-
tions when applying frame-based models.

In our work, we address the signal enhancement by
proposing a novel input representation that retrieves the
missing events in high-speed period. Our input representa-
tion accumulates events based on the temporal distribution
of the event stream. Event signal is enhanced when the distri-
bution is more concentrated since high-speed movement will
lead to more events in a short moment. In addition, we in-
troduce a spatio-temporal recurrent encoding-decoding neu-
ral network architecture (STE-FlowNet), an effective Con-
volutional Gated Recurrent (ConvGRU) (Ballas et al. 2016)
based model that can extract spatio-temporal features effec-



tively. More specifically, the feature encoder has a novel de-
sign, which is utilizing ConvGRU to extract feature maps
from a series of event images. Note that event images are
fed into STE-FlowNet separately by the temporal order, not
as one entity. Also, every timestep the recurrent encoder gets
input, the decoder would estimate optical flow between the
first event image to the current event image which can be
used for next estimation. Event stream has recorded the de-
tailed motion dynamic and provided more intermediate in-
formation, intuitively it is more accurate to estimate optical
flow based on the estimated optical flow information of pre-
vious timestep.

More importantly, recurrent architecture can remove the
restriction in module design and provide more convenience
in the training procedure. In more detail, as a core in most
frame-based algorithms, the correlation layer (Ilg et al.
2017) has been shown to provide important cues for opti-
cal flow estimation. But it has been missed in all the previ-
ous event-based work since it cannot extract features from
one entity input. Unlike previous work (Zhu et al. 2019;
Ye et al. 2018; Zhu et al. 2018b), STE-FlowNet processes
data frame by frame, allowing the correlation layer to be in-
corporated to extract extra features. Although event image
has an amount of motion blur, it preserves abundant spatial
information which is compatible with the correlation layer.
Furthermore, inspired by traditional optimization-based ap-
proaches, we iteratively estimate the residual flows to refine
final results. Besides, multiple intermediate supervised sig-
nals are possible to improve the performance of the network
since recurrent architecture outputs multiple optical flows
corresponding to the different time windows.

We evaluate our method on the Multi Vehicle Stereo
Event Camera dataset (MVSEC) (Zhu et al. 2018a) and
demonstrate its superior generalization ability in different
scenarios. Results show that STE-FlowNet outperforms all
the existing state-of-the-art methods (Zhu et al. 2019; Lee
et al. 2020). Especially for dt = 4 case, we obtain a signif-
icant accuracy boost of 23.0 % on average over the base-
lines. In addition, we validate various design choices of
STE-FlowNet through extensive ablation studies.

Related work
Event-based Optical Flow
More recently, deep learning has been applied to event-based
optical flow thanks to the introduction of some large-scale
event-based benchmarks. Many early works (Moeys et al.
2016; Ghosh et al. 2014) utilize simple ConvNet to estimate
optical flow only based on small datasets. EV-FlowNet, pre-
sented by Zhu et al. (Zhu et al. 2018b), can be regarded as
the first deep learning work training on large datasets with
an encoder-decoder architecture. The event steam was sum-
marized to compact event image preserving the spatial re-
lationships between events as well as most recent temporal
information. As an updated version of EV-FlowNet, an un-
supervised framework has been proposed by Zhu et al. (Zhu
et al. 2019). In more detail, its loss function is designed to
measure the motion blur in the event image. The more accu-
rate the optical flow is, the less motion blur the event images

possess. ECN (Ye et al. 2018) follows the encoder-decoder
architecture. However, it uses an evenly-cascaded structure,
instead of standard ConvNet, to facilitate training by provid-
ing easily-trainable shortcuts. In summary, it is difficult for
ConvNet to find out the temporal correlation between event
images from one entity, which is the limitation all the works
mentioned above cannot ignore.

SNN, as biologically inspired computational models, can
deal with asynchronous computations naturally and ex-
ploit spatio-temporal features from events directly. Many
researches (Paredes-Vallés, Scheper, and de Croon 2019;
Richter, Röhrbein, and Conradt 2014; Orchard et al. 2013;
Lee et al. 2020; Giulioni et al. 2016; Haessig et al. 2018)
consider it as a perfect fit for event-based vision task.
Although they are energy-efficient and hardware-friendly,
there still exists a gap in performance between SNN and
Analog Neural Network (ANN) since it is hard to retain gra-
dients in deeper layers. Hybrid architecture, Spike-FlowNet,
proposed by Lee et al. (Lee et al. 2020) seems to be another
promising candidate for event-based optical flow. It utilizes
SNN as an encoder to extract spatio-temporal features and
has ANN as a decoder to enable deeper architecture. Note
that this work is a kind of progress for addressing the impor-
tance of temporal features compared with ANN methods.
However, SNN still limits the capability of the whole archi-
tecture as evidenced by that it does not outperform standard
ANN methods.

Frame-based Optical Flow

Frame-based optical flow estimation is a classical task in the
computer vision area through the years and has been solved
well. FlowNet (Dosovitskiy et al. 2015) is the first end-to-
end neural network for optical flow estimation, and Fis-
cher et al. (Dosovitskiy et al. 2015) propose a large dataset
FlyingChairs to train the network via supervised learning.
PWC-Net (Sun et al. 2018) and Liteflownet (Hui, Tang, and
Loy 2018) introduce the pyramid and cost volume to neural
networks for optical flow, warping the features in different
levels of the pyramid and learning the flow fields coarse-to-
fine. IRR-Net (Hur and Roth 2019) takes the output from
a previous iteration as an input for the next iteration using
a weights-shared backbone network to iteratively refine the
residual of the optical flow, which demonstrates an iterative
method can increase the motion analysis performance for
an optical flow estimation network. RAFT (Teed and Deng
2020) constructs decoder in the network using ConvGRU,
iteratively decoding the correlation and context information
in a fixed resolution, showing the promising capability of
ConvGRU to extract a spatio-temporal relationship.

Method

Given a series of events from tstart to tend, we estimate a
dense displacement field f =

(
f1, f2

)
, mapping each pixel

x = (u, v) at tstart to its corresponding coordinates x′ =
(u′, v′) =

(
u+ f1(x), v + f2(x)

)
at tend.
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Figure 1: Input events representation. (Top) Raw event steam
between two consecutive grayscale images from an event
camera. (Bottom) Raw event stream are evenly divided to
N splits by number. Each split is converted to a two-channel
image, serving as inputs to the network.

t1 t2 t1 t2

Events Gaussian  Distri.

Figure 2: Gaussian model is utilized for fitting the events
temporal distribution. Summarizing the number of events at
each pixel, as well as the last timestamp, cannot capture the
temporal distribution of events.

Input Data Representation
Event cameras output a stream of events whenever the log
intensity changes exceed a set threshold θ. Each event en-
codes the pixel location of brightness change, timestamp of
the event and the polarity (increase or decrease of a bright-
ness), which can be summarized as e = {x, t, p}.

However, the output stream might lose some events due to
the limitation of pixel bandwidth in some complex textured
and high-speed scenarios (Hu, Liu, and Delbruck 2021;
Lichtsteiner, Posch, and Delbruck 2008). It is challenging to
estimate optical flow in high-speed scenarios, thus we pro-
pose a novel input representation for signal enhancement.
In more detail, all the events are first evenly divided to N
splits by number. As illustrated in Figure 2, the event im-
age by summing the number of events cannot reflect move-
ment details in that period. If most of the events are concen-
trated in a very short moment, it is more likely that the event
camera has experienced a high-speed scene at that moment
compared with the smoother distribution. We, hence, incor-
porated this prior into input representation by accumulating
events weighted by the temporal distribution of the events.

Given a set of M input events (xi, yi, ti, pi)i∈[1:M ] in one

split, Gaussian model is utilized for fitting the events tem-
poral distribution and events are weighted accordingly. We
generate the event image V , see Figure 1, as follows:

V ±(x, y) =

M∑
i=1

⌈p±i (x, y)λkg(ti)⌉ (1)

kg(a) =
1√
2πσ

exp

(
− (a− µ)2

2σ2

)
(2)

Where kg(a) is a sampling kernel from Gaussian model, µ
is the mean and σ is the variance. Both are estimated from
all timestamps of M events. λ is normalizing factor and de-
fined as M∑M

n=1 kg(tn)
. The more concentrated the temporal

distribution, the greater the weights of events. As a result,
the event image is enhanced for the possible high-speed mo-
ment. Note that all weighted value are rounded up so that
events will not be compressed.

Overall Architecture
The overall architecture of our work, STE-FlowNet, is a
variant the encoder-decoder network (Ronneberger, Fischer,
and Brox 2015) as illustrated in Figure 3. Each event im-
age

(
RH×W×2

)
is passed into four encoder modules which

doubles output channels and downsamples to 1/2 resolution
each time. The output feature maps

(
RH/8×W/8×D

)
from

encoder modules then go through two residual blocks. Be-
sides, there is a skip connection that links each encoder to
the corresponding decoder module. While passing the de-
coder module, the input gets upsampled to 2x resolution by
transposed convolution. It restores to the original image size
after four decoder modules. In addition, STE-FlowNet out-
puts an intermediate flow at each resolution which is also
part of the input for the next decoder. Note that the loss is
applied to all the intermediate flows during the training pro-
cedure. More details about the parameter settings of archi-
tecture can be found in the supplemental material.

Feature Extraction
The key component of feature extraction is ConvGRU. Al-
though ConvGRU plays an important role in some frame-
based works (Ren et al. 2019; Teed and Deng 2020), their
ConvGRU modules only focus on processing high-level fea-
ture maps from ConvNet top-layers. Note that ConvNet dis-
cards local information in their top layers and the tempo-
ral variation between images tends to vanish. Therefore, it
can hardly capture fine motion information. To address this
issue, encoder modules utilize ConvGRU to extract spatio-
temporal features from event images at different resolutions
to preserve local motion patterns.

As illustrated in Figure 3, the input event image goes
through two different pyramid-like architectures at the same
time. One way is passing ConvNet to generate spatial fea-
ture maps of the current input event image at different reso-
lutions. Another way is through spatio-temporal feature en-
coders at different resolutions and each encoder module con-
sists of one ConvGRU and one strided convolutional layer.
The input of ConvGRU at timestep t includes three parts,
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Figure 3: Network architecture of the STE-FlowNet. The event input is downsampled through two different paths. One is to
get spatial feature maps of four different resolutions for correlation usage later, the other one is through four ConvGRU based
encoder modules with skip connections to the corresponding decoders. After being passed through two residual blocks, the
activations are then passed through four decoder modules. In addition, each set of decoder activations is passed through another
depthwise convolution layer to generate a flow prediction at its resolution. A loss is applied to this flow prediction, and the
prediction is also concatenated to the decoder activations.

the feature maps F st
t from the lower-level spatio-temporal

feature encoder, the hidden-state of ConvGRU ht−1 from
previous timestep, and the output of the correlation layer Ct

at the same resolution. The ConvGRU is defined by the fol-
lowing equations:

zt = σ(Conv3×3([ht−1, Ct, F
st
t ],Wz)) (3)

rt = σ(Conv3×3([ht−1, Ct, F
st
t ],Wr)) (4)

h̃t = tanh(Conv3×3[rt ⊙ ht−1, Ct, F
st
t ],Wh) (5)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (6)

Note that the correlation layer measures the correspon-
dences between the spatial feature maps (output from
pyramid-like ConvNet) of the current event image F s

t and
of the first event image F s

1 given a predicted flow f∗ from
previous iteration. The correlation layer is defined by the
following equation:

Ct (x) = Corr (F s
t (x+ f∗) , F s

1 (x)) (7)

The recurrent architecture is naturally set since we pro-
cess event images frame by frame and ConvGRU is able to
extract information from previous timestep. The reason that
we adopt recurrent architecture is that we assume that it is
better to estimate optical flow timestep by timestep. It seems
more accurate to estimate flow of t0 − tn based on the esti-
mated flow information of t0 − tn−1 (hidden layer of Con-
vGRU from previous timestep).

Iterative Updates
As illustrated in Figure 4, STE-FlowNet adopts the iterative
residual refine scheme (IRR) (Hur and Roth 2019) to refine
the output, i.e. estimated residual flow, iteratively. The fi-
nal result is the sum of residual flows from all the iteration

Encoder Residual Decoder Flow

Input 

Representation

t T= 1t =2t =

Figure 4: Note that next iteration begins after all the event
images are passed through the network frame by frame.

steps. Besides, we reuse the same network block with shared
weights iteratively. It is noted that the concept of iterative re-
finement has been proved to be an effective way to improve
the final result in many frame-based works (Sun et al. 2018;
Hui, Tang, and Loy 2018; Teed and Deng 2020; Hur and
Roth 2019).

Every iteration after the last input event image is fed
into STE-FlowNet, we can get a sequence of output
{f11,1, · · · , fLT,K}, where f lt,k represents the predicted flow
between the first event image and tth event image at reso-
lution level l after k iterations. The new iteration then be-
gins and the event images, as well as the predicted flows,
are passed into STE-FlowNet again to refine the flow. More
precisely, the predicted flows from previous iteration will be
sent to two places for two different purposes. One is to re-
gard predicted flows as part of the input for STE-FlowNet,
which is to warp the current feature maps for correlation use.
Another is to perform as a skip connection that adds the pre-
dicted flow with the current output of STE-FlowNet to pre-
dict the flow at the current iteration. To illustrate, at k iter-
ation, STE-FlowNet outputs the residual flow ∆fk and the
current estimation is fk = fk−1 + ∆fk with initial starting



dt = 1 frame indoor flying1 indoor flying2 indoor flying3 outdoor day1

AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier

EV-FlowNet (Zhu et al. 2018b) 1.03 2.2 1.72 15.1 1.53 11.9 0.49 0.2
Zhu et al. (Zhu et al. 2019) 0.58 0.0 1.02 4.0 0.87 3.0 0.32 0.0
Spike-FlowNet (Lee et al. 2020) 0.84 0.0 1.28 7.0 1.11 4.6 0.47 0.0
Counts+TimeSurface (Zhu et al. 2018b) 0.60 0.1 0.81 2.0 0.73 1.4 0.45 0.0
Counts (Lee et al. 2020) 0.62 0.8 0.96 5.5 0.87 3.8 0.42 0.0
Ours 0.57 0.1 0.79 1.6 0.72 1.3 0.42 0.0

dt = 4 frame indoor flying1 indoor flying2 indoor flying3 outdoor day1

AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier

EV-FlowNet (Zhu et al. 2018b) 2.25 24.7 4.05 45.3 3.45 39.7 1.23 7.3
Zhu et al. (Zhu et al. 2019) 2.18 24.2 3.85 46.8 3.18 47.8 1.30 9.7
Spike-FlowNet (Lee et al. 2020) 2.24 23.4 3.83 42.1 3.18 34.8 1.09 5.6
Counts+TimeSurface (Zhu et al. 2018b) 2.02 20.1 2.85 32.1 2.49 26.9 1.14 5.5
Counts (Lee et al. 2020) 2.41 28.2 3.30 39.5 2.86 33.6 1.32 6.1
Ours 1.77 14.7 2.52 26.1 2.23 22.1 0.99 3.9

Table 1: Quantitative evaluation of our optical flow network compared to EV-FlowNet (Zhu et al. 2018b), Zhu et al. work
(Zhu et al. 2019), Spike-FlowNet (Lee et al. 2020) and other input representations. For each sequence, Average Endpoint Error
(AEE) and % Outlier are computed. dt = 1 is computed with a time window between two successive grayscale frames, dt = 4
is between four grayscale frames.

point f0 = 0.

Self-Supervised Learning
Many benchmarks provide synchronized events and
grayscale images using DAVIS camera (Brandli et al. 2014)
so that we can adopt self-supervised learning utilizing
grayscale images to guide neural network training. In more
detail, the events stream occurring just between two consec-
utive grayscale images (It, It+dt) is transformed to multiple
event images that are passed into the network subsequently.
In the meantime, we can apply the predicted per-pixel flow
f = (f1, f2) to corresponding grayscale images and gener-
ate a self-supervised loss.

The total loss function consists of two parts (Zhu et al.
2018b), photometric reconstruction loss Lphoto and smooth-
ness loss Lsmooth, which can be written as,

Ltotal = Lphoto + λLsmooth (8)

where λ is the weight factor.
The predicted flow is used to warp the second grayscale

image using bilinear sampling. The more accurate the pre-
dicted flow, the less discrepancy between the first grayscale
image and the warped second grayscale image. The photo-
metric loss is computed as follows:

Lphoto (f ; It, It+dt) =
∑
x

ρ (It (x)− It+dt (x+ f (x))) (9)

where ρ is the Charbonnier loss ρ(x) = (x2 + η2)r, and we
set r = 0.45 and η = 1e−3.

Furthermore, we use smoothness loss to regularize the
predicted flow. It minimizes the flow difference between
neighboring pixels, thus it can enhance the spatial consis-
tency of neighboring flows and mitigate some other issues,
such as the aperture problem. It can be written as:

Lsmooth

(
f1, f2) =

∑
x

|∇f1(x)|+ |∇f2(x)| (10)

where ∇ is the difference operator.

Experiments
Datasets and Training Details
The MVSEC dataset (Zhu et al. 2018a) is used for train-
ing and evaluating our model since it is designed for the de-
velopment of visual perception algorithms for event-based
cameras. Note that the data is collected in two differ-
ent scenarios, e.g. indoor (recorded in rooms) and outdoor
(recorded while driving on public roads). Apart from event
data sequences and corresponding ground truth optical flow,
it also provides the images from a standard stereo frame-
based camera pair for comparison which we can use to gen-
erate the self-supervised loss. To provide fair comparisons
with prior works (Zhu et al. 2019; Lee et al. 2020; Zhu et al.
2018b), we only use the outdoor day2 sequence to train the
models. Indoor flying1, indoor flying2, and indoor flying3,
and outdoor day1 sequences are for evaluation only.

We have two models for two different time window
lengths. In more detail, one is for 1 grayscale image frame
apart (dt = 1), and the other is for 4 grayscale images frame
apart (dt = 4). When it comes to dt = 1 case, the model is
trained for 40 epochs. The number of event images Nframe

that summarizes input event sequence is set to 5, and weight
factor λ for the smoothness loss is set to 10. The initial learn-
ing rate is 4e−4 and scaled by 0.7 after 5, 10, and 20 epochs.
As for dt = 4 case, the model is trained for 15 epochs.
Nframe is set to 20 and λ is set to 10. In addition, the initial
learning rate is 4e−4 with the same scaled strategy. Note that
we use Adam optimizer (Kingma and Ba 2014) with mini-
batch size of 16 and the number of iteration for IRR Nirr is
set to 3 in both cases.

As mentioned before, STE-FlowNet would output inter-
mediate flows at different resolutions and the loss computed
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Figure 5: Qualitative results from evaluation for dt = 1 case. Examples were collected from (Top) outdoor day1 and (Bottom)
indoor flying2. The white boxes are used to highlight the superiority of our method.

by each intermediate flow is weighted equally in the final
loss. In addition, in the dt = 4 cases, there are some more
grayscale images available between tstart and tend, which
means more intermediate self-supervised loss can be gen-
erated since recurrent architecture allows STE-FlowNet to
predict flows for different time window lengths. The inter-
mediate loss can be used to address vanishing gradients is-
sues and improve the performance of the network (Newell,
Yang, and Deng 2016). The multiple intermediate losses
(MIL) from different time window lengths then combine to
form the final loss with equal weights.

Quantitative and Qualitative Results
Average End-point Error (AEE) is used as evaluation met-
ric. It measures the mean distance between the predicted
flow fpred and the ground truth fgt provided by the MVSEC
dataset. Note that only active pixels are reported and they
are defined as places where both the ground truth data and
the events are present (at least one event can be observed).
Besides, we also report the percentage of points with AEE
greater than 3 pixels and 5% of the magnitude of the flow
vector, denoted as % Outlier. During the evaluation, we es-
timate the optical flow on the center cropped 256 × 256 of
input event images. As for evaluation sequences, we use all
the data from the indoor flying sequences. However, only
800 grayscale images from the outdoor day1 sequence are
chosen, following the settings in (Zhu et al. 2019).

Comparison for Networks We compare STE-FlowNet
with three existing methods on event-based optical flow es-
timation: EV-FlowNet (Zhu et al. 2018b), Spike-FlowNet
(Lee et al. 2020) , and the unsupervised framework of Zhu et
al. (Zhu et al. 2019). Table 1 provides the evaluation results
in comparison with all the baselines mentioned above.

For dt = 1 case, we can find out that STE-FlowNet has
achieved better results compared with all other baselines on
three indoor sequences. Specifically, STE-FlowNet achieves
AEE of 0.57, 0.79 and 0.72 on the indoor flying1, indoor
flying2 and indoor flying3 sequences respectively, 2%, 23%
and 17% error reduction from the best prior deep network.
Note that STE-FlowNet achieves the lowest % Outlier in

most of evaluation sequences. Although our model doesn’t
get the best result on outdoor day1, we have demonstrated
the better generalization ability of the model on indoor se-
quences than baselines.

As for dt = 4 case, our model has made a remarkable
achievement. We outperform all existing approaches in all
the test sequences by a large margin. In more detail, we get
AEE of 1.77, 2.52, and 2.23 on the indoor flying1, indoor
flying2, and indoor flying3 sequences respectively. The er-
ror reduction from the best prior work on indoor sequences
is 18%, 34%, and 30%. Even on the outdoor day1 sequence,
we still have a satisfying result. Our model achieves AEE
of 0.99 and gets 9% error reduction. Furthermore, STE-
FlowNet achieves the lowest % Outlier in all the evaluation
sequences. The results show that recurrent architecture can
better handle more input data since it processes data frame
by frame, especially in the scenario where the time win-
dow length is long and the number of input event images is
large. On the contrary, standard ConvNet architecture might
be overwhelmed by massive data at one time.

The grayscale, spike event, ground truth flow, and the cor-
responding predicted flow images are visualized in Figure 5
where the images are taken from outdoor day1, indoor fly-
ing2, and indoor flying3 in dt = 1. Since the event data is
quite sparse, STE-FlowNet doesn’t predict flows in most of
the regions. In summary, the results show that STE-FlowNet
can accurately estimate the optical flow in both the indoor
and outdoor scenes. In addition, STE-FlowNet can estimate
flows in more edge regions where Spike-FlowNet has no
output. Also, in some regions with rich texture, the direc-
tions of predicted flows (viewed in color) of STE-FlowNet
are closer to the ground truth than Spike-FlowNet.

Comparison for Input Representations We compare our
input representation with that of other optical flow algo-
rithms. In more detail, Spike-FlowNet (Lee et al. 2020) gen-
erates an event image by summing the number of events
at each pixel, denoted as Counts. Ev-FlowNet (Zhu et al.
2018b) proposes input representation that summarizes the
number of events at each pixel as well as the last timestamp,
denoted as Counts+TimeSurface. For fair comparison, the



MIL Corr IRR CGRU indoor flying1 indoor flying2 indoor flying3 outdoor day1

AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier

dt=1

STE-G – ✗ ✗ ✗ 1.37 9.4 2.16 22.7 2.03 20.8 0.59 0.1
STE-I – ✗ ✗ ✓ 0.63 0.2 0.87 2.8 0.79 2.4 0.42 0.0
STE-C – ✗ ✓ ✓ 0.59 0.2 0.87 2.8 0.79 2.4 0.41 0.0

STE – ✓ ✓ ✓ 0.57 0.1 0.79 1.6 0.72 1.3 0.42 0.0

dt=4

STE-G ✓ ✗ ✗ ✗ 4.77 65.6 7.36 75.8 6.55 74.8 3.10 44.5
STE-I ✓ ✗ ✗ ✓ 1.91 17.7 2.82 31.2 2.41 24.5 1.10 4.6
STE-C ✓ ✗ ✓ ✓ 2.11 21.9 2.73 33.7 2.46 27.4 1.06 4.1
STE-L ✗ ✓ ✓ ✓ 1.96 18.6 2.70 30.6 2.40 25.7 1.01 4.5
STE ✓ ✓ ✓ ✓ 1.77 14.7 2.52 26.1 2.23 22.1 0.99 3.9

Table 2: Ablation studies of our design choices for dt = 1 and dt = 4 case. STE-FlowNet without IRR, and STE-FlowNet
without ConvGRU and IRR. The ablation baselines are denoted as STE-C, STE-I, and STE-G respectively. For dt = 4, STE-I
means removing multiple intermediate losses.

backbones of Counts and Counts+TimeSurface are the same
as that of STE-FlowNet.

From Table 1, our representation has demonstrated the
superiority over other methods. Counting events (Lee et al.
2020) discards the rich temporal information in the events,
and is susceptible to motion blur. Time Surface method used
in (Zhu et al. 2018b) is only able to capture some temporal
information around some specific moment. Different with
these representations, our method accumulates the events
based on the temporal distribution of the events stream. We
aim to enhance the signal and highlight the period when the
event camera encounters a high-speed scene.

Qualitative Results The grayscale, spike event, ground
truth flow, and the corresponding predicted flow images are
visualized in Figure 5 where the images are taken from out-
door day1, indoor flying2, and indoor flying3 in dt = 1.
Since the event data is quite sparse, STE-FlowNet doesn’t
predict flows in most of the regions. In summary, the results
show that STE-FlowNet can estimate flows in more edge re-
gions where Spike-FlowNet has no output. Also, in some
regions with rich texture, the directions of predicted flows
(viewed in color) of STE-FlowNet are closer to the ground
truth than Spike-FlowNet.

Moreover, Figure 6 shows the intermediate outputs from
parts timestep of the network. We can find out the optical
flow is gradually enhanced and the network indeed can get
optical flow information from previous timesteps.

Ablation Studies
There are three components needing to be assessed, i.e.
ConvGRU, correlation layer, and IRR scheme. Therefore,
we have three baselines for ablation studies, namely, STE-
FlowNet without correlation layer, STE-FlowNet without
IRR, and STE-FlowNet without ConvGRU and IRR. The
ablation baselines are denoted as STE-C, STE-I, and STE-
G respectively. Note that the correlation layer is meaning-
less when the IRR scheme is absent since the flows used for
correlation come from the previous iteration. Besides, we
concatenate the predicted flow with the input event image
directly, serving as input for the next iteration in STE-C. As

Figure 6: The intermediate outputs from parts timesteps.
Timestep increases from left to right.

for dt = 4 case, we have additional ablation for removing
multiple intermediate losses (MIL) for different time win-
dows, denoted as STE-L.

Table 2 shows the results of ablation studies in terms of
both AEE and % Outliers for dt = 1 case. STE-G performs
the worst compared with others in all evaluation sequences.
This is because that it only depends on one input event im-
age to predict flows without the ConvGRU to provide extra
spatio-temporal information from other event images. STE-
FlowNet and STE-C perform better than STE-I in almost
all evaluation sequences, which demonstrates the effective-
ness of the IRR scheme. In addition, STE-FlowNet outper-
forms STE-C. It shows correlation layer is able to provide
more valuable features than directly sending flows. Also, it
proves that the correlation layer can be applied in dealing
with the event data. Note that STE-I can still achieve promis-
ing results compared with some prior works. It again demon-
strates the superiority of our architecture. The same conclu-
sions can be obtained in dt = 4 case. Moreover, we find out
that STE-FlowNet performs better than STE-L. Therefore,



we believe that the multiple intermediate losses from differ-
ent time windows indeed help to improve the performance
of the model. Note that the prior works (Zhu et al. 2019,
2018b; Ye et al. 2018; Lee et al. 2020) are unable to utilize
additional grayscale images.

Conclusion
We propose a ConvGRU-based encoding-decoding network
with a novel input representation to effectively extract the
spatio-temporal information from event input. Moreover, the
correlation layer is used to provide more valuable clues for
the IRR scheme to further refine the predicted flow. Empiri-
cally, results show that STE-FlowNet outperforms all exist-
ing methods in a variety of indoor and outdoor scenes.
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